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KOROVKIN TESTS, APPROXIMATION, 
AND ERGODIC THEORY 

STEFANO SERRA CAPIZZANO 

ABSTRACT. We consider sequences of s k(n) x t . k(n) matrices {An(f)} with 
a block structure spectrally distributed as an L1 p-variate s x t matrix-valued 
function f, and, for any n, we suppose that An (.) is a linear and positive 
operator. For every fixed n we approximate the matrix An(f) in a suitable 
linear space Mn of s k(n) x t . k(n) matrices by minimizing the Frobenius 
norm of An (f ) - Xn when Xn ranges over M n. The minimizer Xn is denoted 
by Pk(n)(An(f)). We show that only a simple Korovkin test over a finite 
number of polynomial test functions has to be performed in order to prove the 
following general facts: 

1. the sequence {Pk(n)(An(f))} is distributed as f 
2. the sequence {An (f )-Pk(n) (An (f))} is distributed as the constant func- 

tion 0 (i.e. is spectrally clustered at zero). 
The first result is an ergodic one which can be used for solving numerical 
approximation theory problems. The second has a natural interpretation in 
the theory of the preconditioning associated to cg-like algorithms. 

1. INTRODUCTION 

In this paper we deal with the approximation of a given sequence of matrices 
{An(f)} by another sequence Pk(n)(An(f)) of matrices obtained from the first one 
by projecting (via the operators {Pk(n) (.) }) each matrix (f ) over a linear space 
of matrices with regard to the scalar product associated with the FRobenius norm. 
In the theory of preconditioning this kind of matrix approximation is called optimal 
[6]. 

Here we assume that each An(n) is a linear and positive operator, that each 
sequence {An(f)} is distributed as f (in the Weyl-Tyrtyshnikov sense [31] as re- 
ported in equation (4)), and that jjAn(f)11sp <? IlfHIL when f E Loo with 11 IISP 
being the spectral norm [2]. We firstly deduce that Pk(n) () is a linear and positive 
operator. This preliminary fact is then used to prove a powerful and somewhat 
surprising result: if {Pk(n)(An(g))} approximates {An(g)} for a finite set of test 
polynomials g in the sense that the sequence {Pk(n) (An(g)) - An(9)} is clustered at 
zero, then each sequence {Pk(n) (An(f))} approximates the sequence {An(f)} for 
any integrable function f. 

This result is in the style of Korovkin theory [17, 22]. However, while the classical 
Korovkin-style theorems are used to deduce convergence over the class of continuous 
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functions, here the result is much more powerful since we are able to treat the L, 
case. 

We stress that we use the matrix version of the Korovkin theorems developed in 
[20, 22] and the simple but powerful technique used by Tilli in the Toeplitz context 
[29]. Indeed, as a special case of the general result, we consider also the optimal 
approximation of the multilevel Toeplitz matrices with s x t unstructured blocks by 
algebras/matrix spaces: we obtain that the optimal approximation also distributes 
as f for all the known trigonometric algebras [10, 16]. This approximation result 
has two aspects: the first is related to the use of cg-like algorithms [5, 21, 20, 31]. 
The second is not so classical, because we propose an algorithm for approximating 
a multivariate Lebesgue integrable function f. We use its Fourier coefficients, the 
optimal approximation of the Toeplitz matrices {An(f )} in the circulant algebra [7], 
and the ergodic theorem obtained as a byproduct of the main analysis: the given 
procedure is cheap enough because its arithmetic and parallel cost is asymptotically 
that of the well known fast Fourier transform (FFT) [3]. 

The paper is organized as follows. In Section 2 we introduce some notation and 
some preliminary results. In Section 3 we give the basic properties of the optimal 
approximation, and in Section 4 we describe the linear spaces of matrices in which 
we approximate the sequence {An(f)}. Section 5 is devoted to the Korovkin-style 
theorems, and in Section 6 we prove the main results. Section 7 is then addressed 
to some applications, and Section 8 to a few related numerical experiments. The 
final Section 9 of conclusions ends the paper. 

2. NOTATIONS AND PRELIMINARIES 

We denote by M, the linear space Cs X s of all square matrices of order s with 
complex entries. If A e Ms then the symbol xj (A) denotes the j-th singular value 
of A, and, if A is Hermitian, then the symbol Aj (A) denotes the j-th eigenvalue of 
A, where both sets are in nonincreasing order. The space Ms is equipped with the 
trace norm defined as [2] 

S 

AIltr = Zj(A), A E Ms. 
j=1 

It is interesting to observe that the trace norm coincides with the ordinary trace 
when A is Hermitian nonnegative definite. Moreover, each square matrix can be 
looked at as a special linear combination of nonnegative definite matriQes. In par- 
ticular, we have 

(1) A = (ReA)+ - (ReA)- + i(ImA)+ - i(ImA)-, i2 = -1, 

where ReA = (A + A*)/2 and ImA = (A - A*)/(2i) are Hermitian matrices and 
X* denotes the transpose conjugate of X. In addition, for any Hermitian matrix A 
we have A = Udiag(di, ... , ds)U*, where the values {dj} are real and U is unitary. 
Finally, the matrices A+ and A- are defined as A+ = Udiag(dl+,... , d+)U* and 
A- = Udiag(dj,... ,d-)U* with d+ = max{O,d} and d- = max{0, -d}. 

The following basic result will be used later. 

Lemma 2.1 ([2, Bhatia]). For any pair of matrices A, B e Ms, we have 

(2) E loj(A) - aj(B)l < IA - BItr. 
j=1 
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If A and B are Hermitian, then we also have 

(3) J Aj(A) - Aj(B)l IIA - Blltr. 
j=l 

Now we consider a class {An(f)}jnN of k(n) x k(n) block matrices with s x s 
blocks depending on the function f Q -- Ms, where Q C RP, p > 1, is a 
compact set with nonempty interior equipped with a probability measure ,l so that 
u(Q) = 1. Without loss of generality and in order to apply the Korovkin-type 
results of Section 5, we will suppose that an E extension of Q is a subset of IP with 
I = [-ir, 7r]: if it is not the case, then we can make a linear change of variables 
so that an E extension of the new definition set is contained in IP. Here {k(n)} 
is a monotone increasing sequence of positive integers, and n can be thought as a 
positive integer or as a p-dimensional vector of integers as in multilevel structures 
[31, 29]. For instance, when we consider p-level Toeplitz matrices [31, 29, 23] 
or discretizations by equispaced finite differences over rectangular p-dimensional 
domains Q of boundary value differential problems [14], the quantity k(n) equals 
N(n) = nri n2 .np with n = (ni,fn2,... ,np) E NP. When the domain Q is 
not rectangular, it is evident that k(n) is generically an increasing function of n, 
where n can be, roughly speaking, the inverse of the stepsize of the considered 
discretization. 

More precisely, we deal with ,u-integrable matrix-valued functions. So it is nat- 
ural to use the L1-norm induced by the trace norm over M8, i.e., 

|f IL1 = j l|f (X) trdft(x). 

In addition, we assume that An () is linear and positive in the sense that for 
any f,g E Li = L1(Q,M.) and a, 3f constants, we require that An(af + fg) = 
aAAn(f) + f3An(g) and that the matrices {An(f)} are all nonnegative definite if the 
symbol f is Hermitian and nonnegative definite almost everywhere with regard to 
the measure ,u. 

We denote by {u i(Anf(f))}b<.-k(n) and {Ai(Anf(f))}i<S.,k(n) the complete set of 
the singular values and eigenvalues of An(f), respectively. We suppose that the 
singular values of {A(f) } are distributed as f with regard to the probability space 
(Q, u) [31, 29, 21] in the Weyl-Tyrtyshnikov sense: for any F E Co (continuous 
function with bounded support) the ergodic formula 

s skk(n) s 
(4) lim k( : F(ai (An (f))) F (cj (f (x))) dl-(x) 

j=1 ~~~~j=1 

holds true. Notice that the right-hand side of equation (4) makes sense because 
each function F(cj (f(x))) is measurable and bounded over the probability space 
(Q, ,u). If all the matrices are Hermitian, then we suppose that for any test function 
F E Co the equation 

1 s.k(n) s 

(5) lim k( ) E F(Aj(An(f))) jxF(Aj (f(x)))dIt(x) n-, oo sk(ni) _= j=1 

holds. We also assume the following: 

(6) 10 JAn(f)jtr = lf(X) jjtrdI(x) = Ilf JL 
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Finally, as emphasized in the next lemma, certain relations in the style of equa- 
tion (6) are a simple consequence of assumption (4) in the case where f is in 
Loo (Q, M8) with respect to 1u. 

Lemma 2.2. Let {11 * IIp}oo>p>1 be the class of the Schatten p-norms [2, Bhatia, p. 
92] over Ms, with 

IAIKp = A=), P(A), p < x, 

IAIIOO = al(A), A e- Ms7 

and let {* IILp}o?>p>1 be a class of norms [2] over Lco(Q, Ms), with 

pIf f, = fA If(x) lPdi(x), p < x0, 

Ilf ILoo = esssup.IIf(x)IIoo, f e Loo(Q,Ms). 
Then 

lim k(A) nIAn(f)IIP = If IILP, p < 00, 

and 
lim IIAn(f)IIoo ` Ilf IILoo n-+oo 

Proof. It is enough to set F continuous, with bounded support, and such that it 
coincides with F(z) = over [0, Ilf IL], and to recall that 

IIAn(f)Isp = IIAn(f)AIoo <? If IK|0 

The application of relation (4) concludes the proof of the first part. 
For the second part, we first remark that limsupno I IAn(f)IIoo < IIfIL. Now, 

by contradiction, we suppose that 

liminf IAn()lloo = a < If IIL,,. n-oo 

Consider a value e > 0 so that a + 2E < Ilf JL. There exists a subsequence {nq} 
so that for any q > q we have 

IIAnq(f)I0oo = a +e < IlfIL.o 

Take a globally continuous function F, piecewise linear and with bounded support, 
satisfying the following relations: 

0 if {z < a + 'E U {z > llfJILO. + 6} 
(7) F(z) = linear over (a+6,Ea+26))U(IlfIIL.X11fILO +6), 

I 1 over [a+2,6|IIfIILJ.1 
Set QE = {x e Q : a, (f (x)) e [a + 2E, | f | LO}. From the definition of 11 f 11 L. it 
follows that Iu(Q,) > 0. Therefore for n = nq, q large enough, and F as in (7), we 
find that 

s k(nq) 

(8) s s k(nq) S F(ai(Anq(f))) 

and 

(9) 

]| FF(uj(f(x)))dA (x) >1 F(a 1(f(x)))dA (x) > 1dI(x) =,U(Qf) > 0. 
j=1 

i 

Finally, for q large enough, we observe that (8) and (9) contradict (4). 0 
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It should be noticed that the FRobenius norm is the norm denoted by 11 112, the 
trace norm is the one denoted by 11 111, and the spectral norm coincides with IIlo 

Remark 2.1. All the results of this paper apply to class of matrices An(f) such 
that A,(.) is a linear positive operator and under the assumption that (4) holds. 
We observe that there exist several important classes of matrices that satisfy these 
hypotheses: multilevel block Toeplitz matrices [32, 29], finite difference and finite 
element matrices discretizing elliptic problems over bounded domains of RP and 
with Dirichlet boundary conditions [30, 25, 27]. 

3. THE OPTIMAL FROBENIUS APPROXIMATION 

In this section we allow the function f to be valued in the space CSXL. Then 
we suppose to have the block matrices {A,(f)}fEN of dimension k(n) x k(n) with 
s x t blocks. Now, in order to make sense of the notion of positivity, we assume the 
following locality property. Let f: Q -* CsXL and g: Q -* Csl xtl, with s > s, and 
t > t1, and let us suppose that g(*) is a submatrix of f (.) almost everywhere. With 
these hypotheses we require that An(g) is a submatrix of An(f) In this way, we 
say that the operator An(.) is positive if it is positive over the k x k matrix-valued 
functions with k = min{s, t}. 

Remark 3.1. It should be observed that, under this locality property, relation (4) 
still holds for {An(f)} when s is replaced by min{s, t}. 

3.1. Matrix spaces and optimal approximation. Let U be a unitary complex 
K x K matrix; then, for any fixed K, s,t, by M(U) we denote the vector space 
of all the matrices simultaneously block diagonalized by the unitary transforms 
U(s) = U X Is and U* (t) = U* 8 ItJ 

More precisely, 

(10) M(U) = {X = U(s)AU*(t) : A = diagj=, K GAi) 1, 

\j being s x t complex matrices. 
Some generalizations have been considered [4, 10], by modifying the canonical 

form i\ which is assumed to be diagonal in the definition of MA(U): here, for the 
sake of simplicity, we restrict our analysis to the case where i\ is diagonal. 

The optimal preconditioning operator PK = PK [U] is defined on CK.SXK t and 
takes values in M(U), where both vector spaces are equipped with the Frobenius 
norm IIXH11 2 = Zi j IXi,j 2 = IIXK12. Then 

(11) PK(A) = argminx<m(u) |A- XIIF, 

where the minimum exists and is unique since M(U) is a linear finite dimensional 
space and (CK SXK t, (., ) F) is a Hilbert space with (A, B)F = tr(A*B), A 12 - 

(A, A)F and where tr(.) is the ordinary trace. 
The following two results have been proved in a more general setting in [10]: the 

first theorem concerns the algebraic properties of the optimal operator, the second 
stresses some interesting geometric features. 

Theorem 3.1. Let A,B e CKSXKt, and let PK = PK[U,s,t] be defined as in 
(11). The following algebraic properties hold: 

1. PK (A) satisfies the explicit formula 

(12) PK (A) = U(s)6(U*(s)AU(t))U*(t), 
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where 6(U*(s)AU(t)) is the block diagonal matrix with s x t blocks such that 

(6(U*(s)AU(t)))j,j = (U*(s)AU(t))j,j, for i = 1, ... , K; 
2. PK (aA + 31B) = aPK (A) + /3PK (B) with a, E e C; 
3. PK(A*) = (PK (A))*, where PK = PK[U*, t,s] and s and t interchange their 

roles; 
4. if s = t, PK (A) is Hermitian if A is; 
5. Trace(PK(A)) = Trace(A) (in the s x t block sense). 

For X C CK-sxK-t we set 
K 

Trace(X) = ZX[(j - 1)s + 1: js, (j - 1)t + 1: jt] e CSXt7 
j=1 

where X [a /, y: 6] is the submatrix of A obtained by deleting each row whose 
index does not belong to [a, /] and each column whose index does not belong to 
[-y, 6]. It should be remarked that the invariance of the trace in the block sense 
plainly implies the invariance of the ordinary trace when s = t. 

Theorem 3.2. Let A e CK SxK t and PK = PK[U]. The following geometric 
properties hold: 

1. supx: IX=l lP'PK(X)H1* = 1, with 11 11* being the spectral norm or the Frobe- 
nius norm, 

2. IA - 'PK (A) 2 F FA - -I IPK (A)F'. 

Now the following result is a simple consequence of Theorem 3.1. 

Theorem 3.3. If s = t and A is Hermitian, then the eigenvalues of PK(A) are 
contained in the closed real interval [Amin(A), Amax(A)] containing all the eigenval- 
ues of A. Moreover, when A is positive definite, so is PK (A). 

In short, this operator is always linear, and preserves the Hermitianity, the posi- 
tivity and the block trace; therefore it is a linear and positive operator in the sense 
stated in [24], namely, it is linear and, if s = t, it maps nonnegative definite matrices 
into nonnegative definite matrices. 

Therefore the composition PK(An(f)) with K = k(n) is another linear positive 
operator in a somewhat different sense [21], because, under the assumption that s = 

t, it maps nonnegative definite matrix-valued functions into nonnegative definite 
matrices. 

The following stability result is a consequence of relation (6) and of the trace 
preserving property of the operator PK stated in Theorem 3.1. The style of the 
proof follows that of Lemma 3.1 in [29]. 

Lemma 3.1. Iff e L1(Q,Ms), then, for n large enough, 

(13) 1 k(n)(An(f)) 1tr < 5|| ||L 

Proof. Consider the Hermitian matrix-valued functions 

fi = (Ref)+, f2 = (Ref)7, f3 = (Imf)+, f4 = (Imf)-. 

From (1), we have f (x) = fi (x) - f2 (x) + if3 (x) - if4 (x) fQr all x e Q, where each 
matrix fi is positive semidefinite. Since the operator Pk(n) (An(')) is linear, we have 

4 

(14) 1'Pk (n) (An(f )) IItr <_ E |Pk(n) (An(fi)) itr1 
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and by the positivity of the operator, each Pk(n) (An (fi)) is positive semidefinite and 
therefore the trace norm coincides with the usual trace. But the operator Pk(n)() 

preserves the trace, and therefore 

L1Pk(n)(An(fi)) jtr = tr(An(fi)), i = 1,2,3,4. 

So in light of equation (6), there exists an integer -n so that for n > -n we find that 

1 tr(An(fi)) < (1.25) j jfi(X)Hjtrd,U(x) = (1.25) jfijjL1, s .k(nt) 

and since IlfilIL, <? IlfHlL the claimed thesis follows. O 

Notice that the estimate of the constant 5 appearing in (13) can be improved, 
although for our purposes it is good enough. 

4. GRAM MATRIX ALGEBRAS AND SPACES 

Let W = {Wn}nEN, with Wn = {x(n)}, be a sequence of sets of k(n) distinct 
points belonging to Q. By means of this sequence of sets we define a family of 
semidefinite scalar products { [., ] over the space of the complex-valued functions 
defined on Q: for h1 and h2 complex-valued functions we define 

k(n) 

[h,7h2]n= E(hlh2) (xn)). 

i= 1 

Now, let Fn = {ff(n) }1<i<k(n) be a sequence of orthogonal normalized continuous 
functions with respect to the inner product [., .]n; therefore we have 

(15) [f(n) f (n)f]n = iJ, i,j {1,... , k(n)}, 

where 6.,. is the Kronecker delta. If the functions of Fn are polynomials, then 
we find the classical Gram polynomials. In the general case, adopting the same 
terminology, we call the functions of Fn Gram functions. 

Definition 4.1. A space of matrices of the form (Un 0 I,)zA(Un 0 It) is a Gram 
space if and only if the matrix Un is the generalized Vandermonde [12] matrix 

/n , (n xx k(n) n (7) (x(n))) . Here the set {if(}l1<j<k(n) is the finite Gram sequence Fn 

associated with the inner product related to the grid Wn = {xn) }. If s = t, then 
we have a Gram algebra. 

Therefore, in the following, by {M (Un) } we denote the sequence of Gram spaces 
(or algebras) related to the sets W = {Wn} and F = {Fn}. 

We notice that the orthogonality condition Un*Un = I is exactly inherited frorn 
the discrete orthogonality relations (15) concerning the Gram functions. 

The last requirement is that the sequence W is distributed as Q with regard to 
the probability measure A: 

Definition 4.2. A sequence of sets W = {Wn}n with Wn = {x(n)} and #(Wn) = 

k(n) is called quasi-uniform with regard to (Q, 1a) if for any ball B(xo, p) C Q, 
B(xo, p) = {x e RP: lix -xolloo < p}, p > O, we have 

# {Xn) E B(xo7p)} = k(n) .p(B(x0,p)) + o(k(n)). 
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We say that W is distributed as (Q, ,u), if W is quasi-uniform and for any positive 
e there exist M = Me > O, 6 = 6b > O and points {vj}, j = 1, .. ., M such that 

B(vj,6) C Q, B?(vj,6) n B?(Vk , 6) = 0, j + k7 

with X? denoting the interior part of X and 

IL(Q\( U B(vj ,6)) <e 

Some remarks concerning the preceding definition are needed. 

Remark 4.1. In the preceding definition we have introduced two notions, quasi- 
uniformity with regard to (Q, ,u) and distribution as (Q, ,u). These notions often 
coincide, but they are not equivalent. By definition it is evident that the second 
implies the first. However it is possible to construct a compact set Q C R with 
nonempty interior endowed with a probability measure, and a grid sequence W 
whose points belong to Q such that 

* W = {Wn}n is quasi-uniform with regard to (Q, ,u) and 
* W is not distributed as (Q, ,uI). 

Example. Let e < 10-1, let {qi}iEN be the sequence of all the rational numbers 
belonging to the real interval [1,2], with qo = 3/2. Let S = UiCNB0(q7,E2-1), 
K = [1, 2]\S and let Q = [O, 1] U K. The following facts hold: 

1. Q is compact (since S is open). 
2. S is dense in [1, 2] and K is totally not connected. 
3. The Lebesgue measure m(K) of K is t, and 1 - 2/5 < t < 1 - 1/5. 

Therefore, setting , = (m+t)' we have that (Q, u) is a probability space, Q is 

compact, and its interior is nonempty since Q? = (0,1). 
Now define W = {Wn }n with 

Wn = {X(n) = i/n,i = 0, . .. ,n -1, X(n) E- K, i = n, . .. ,n+ t} 

and k(n) = n + Ftnl. We claim that W is quasi-uniform with regard to (Q, ,u): in 
fact, by item 2 it follows that all the balls of positive radius of Q are the nontrivial 
subintervals [a, 3] of [0, 1]. Therefore 

#{xn) E B(xo,p) c Q} = # x(n) E [a 3] c [0 1] 

= (3i/n-E)[a,3]C[0], i=o,... ,?n 1) 

n(CL3- a) + 0(1) = (n + tn) 
W a) + OM 

= k(n) * ,u(B(xo, p)) + o(k(n)). 

Nevertheless W is not distributed as (Q, IL). In fact the set Q cannot be approx- 
imated in measure IL by finite unions of internal intervals, since K is totally not 
connected and has positive IL measure equal to t/(t + 1). 

Remark 4.2. If p, is constructed as before (that is as a normalized Lebesgue measure 
over RP), then "W is distributed as (Q, uI)" implies that Q is measurable in the 
Peano-Jordan sense [15] (the multidimensional version of the Riemann measure). 
In fact Q is compact and consequently Lebesgue measurable; therefore it can be 
approximated in measure m by plurirectangles containing Q. Since W is distributed 
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as (Q, ,u), it follows that it can be approximated in measure m by plurirectangles 
contained in Q. Therefore Q is measurable in the Peano-Jordan sense. 

It is worth noticing that if W is distributed as (Q, ,u), then, in the light of Remark 
4.2, for any continuous function f defined over Q, we can use the values {f(x$'))} 
in Riemann sums in order to approximate fQ fd,u. More precisely, the following 
statement holds true: 

Lemma 4.1. Suppose that W is distributed as (Q, /a) and f is continuous. Then 

k(n) 

Z f (4n)) = k(n).] f d,l + o(k(n)). 

Proof. For any fixed E > 0, there exist a positive 6 and an integer M = ME so that 
we find values {Oaj}jjM and points {Vj}jjM of Q for which 

1. B(vj , 6) c Q7 Bo (vj , 6) n Bo (Vk 7 6) = 07 j =,A k7 

2. t(Q \(Uj B(vj, 6))) < E 

*. If(x) -Z7=1 cChB(v,6)(x)I < if x E Uj B(v,6). 
Here Chx denotes the characteristic function of a set X. From this we have 

k(n) k(n) M 

E f (x$n)) = E EajChB(vj,6) (4n)) + An,E + Bn,E 
i=l i=1 j=1 

M k(n) 

= ESkj S ChB(j,,6) (Xn)) + AnE + Bn,E 

j=1 i=1 

M 

- 5Oej # {X(n) E B(vj,6)} + AnE + Bn,E 
j=l 

where, by virtue of items 1, 2, and 3, and of the quasi-uniform distribution of W, 
we find that 

|An,EI < S <?k(n), 
(~n) x( EUj B(vj,6) 

IBn,E I < l IIf 11 L? < {Q\ U B(vj,6)}k(n)|If IIL. + o(k(n)) 
Iat) EQ\U, B(vj,6) 

< Ek(n)llf |IL. + o(k(n)), 

M M 

aj# {(n) E B(vj , 6)} = k(n) J j cJChB(vj,6) (x)d1l + o(k(n)), 
:1=1 = 

and 
M 

] If(x) - ZajChB(vj,6)(x)Id1 < E(1 + lfIILJ) 
j=1 

Finally, by joining all the previous 5 relations and using the arbitrariness of E, the 
proof is concluded. EZ 
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5. SOME KOROVKIN-TYPE THEOREMS 

In this section we recall some results [20, 10] of approximation theory based on 
the concepts of linear positive operators and in the spirit of the Korovkin theorems 
[17]. 

5.1. Approximation theory premises. Since the goodness of the optimal pre- 
conditioners in the case of Gram algebras is roughly speaking decided by the be- 
haviour of an operator [22] over the grid points of Wn, we are motivated to introduce 
the notions of convergence on discrete sets. 

Definition 5.1. Let f: Q -- X, where X = (X, 1) is a normed vector space. 
Let {ff}.n be a sequence of functions belonging to C(Q, X) and {Wn} C Q be a 
sequence of sets of pairwise distinct points with #(Wn) = k(n). 

* We say that fn uniformly converges to f on {Wn} if 

lim sup Ifn(x) - f (x)1 = O. 
noo XEWn 

* The convergence is 0(1)-uniform (on {Wn}) if 

lim sup lIfn(x) - f (x) II = 0, 
- xEWn \W(Jn) 

where W(Jn) is a set of points of Wn associated with the set of indices Jn of 
cardinality bounded by an absolute constant. 

* The convergence is o(k(n))-uniform (on {Wn}) if 

lim sup lIfn(x) -f(x)I = 0, 
-x E Wn \ W (Jn) 

where W(Jn) is a set of points of Wn whose cardinality is o(k(n)). 

Now let us introduce the following definition. 

Definition 5.2 ([22]). Let 9 be the linear space 

(C(IP, C'8x'), I-IIoo), I =[--7r,7r] 

of continuous (periodic) functions defined on IP, and let {0n} be a sequence of linear 
operators on G. If {qj}3__ is the set of the three test functions 1, sin(x), cos(x), 
and Ej,k is the matrix of the canonical basis of CSXt having 1 in the position (j, k) 
and zero elsewhere, let i,j,k,1l(X) = Ej,kqi(xl) for i = 1,2,3, (j,k) E {1,... , s} x 
{1,... ,t},l {1,... ,p}. 

We say that "{n}nn satisfies the Korovkin test' if In(di,j,k,l) uniformly converges 
to qij,k,l, according to one of the notions given in Definition 5.1. 

We notice that for p = s = t = 1, the latter definition reduces to the classical 
Korovkin test [17] in the trigonometric scalar case. 

In the following we will consider the linear operator 

(16) Ln[U](f) x E IP - ([u(n)](x) 0 Is) An(f) ([u(n)](x) 0 It)* E csxt 

Here [u(n)] (x) is the generic row of U*, where the grid points have been replaced by 
the continuous variable x = (x1,... , xp). Notice that, in light of part 1 of Theorem 
3.1, we obtain that the diagonal form of Pk(n)(An(f)) = Pk(n)[U](An(f)) is given 
by the matrix 

/ , h 
(n), (n 
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Remark 5.1. It can be seen that Ln [U] (f ) is the continuous expression of the s x t 
diagonal blocks of U*(s)An(f)U(t); hence, the singular values of Pk(,)(A,(f)) are 
given by those of Ln [U] (f) evaluated on the points of Wn. 

Now we analyze the problem of the convergence with regard to the concepts of 
0(1)-uniform convergence or o(k(n))-uniform convergence, by stating a specialized 
version of the Korovkin theorem. 

Theorem 5.1 ([10]). Let g be the function space of Definition 5.2, and suppose 
that the linear operators Ln[U]: 9 -- given by (16), satisfy the Korovkin test on 
a given sequence of grids {Wn} C IP, with the exception of the points belonging to 
W(Jn). Then, for any continuous function f E 9, Ln [U] (f ) uniformly converges to 
f on the same sequence of grids {Wn}, with the exception of the points of W(Jn). 

We remark that the related convergence is 0(1)-uniform or o(k(n))-uniform ac- 
cording to the cardinality of W(Jn): as usual in the Korovkin results, the conver- 
gence only needs to be checked on the test functions. Notice that in Section 2, we 
supposed that an 6 extension of Q is a subset of IP; this assumption was considered 
in order to link Theorem 5.1 with our class of matrices {An(f)} in which the symbol 
f is defined over Q 

Indeed, by invoking an application of Tietze's extension theorem ([18], pp. 422- 
423), for any continuous function f defined over Q, there exists a continuous 27r- 
periodic function i defined over IP so that its trace over Q is f (see also Theorem 
3.2 in [8], pp. 10-11). 

6. MAIN THEOREMS 

We first present a lemma due to Tyrtyshnikov which is one of the tools that are 
going to be used. Then we give an application of the Korovkin-style theory which 
allows one to prove the main ergodic and approximation results. 

Definition 6.1 ([31]). Consider a sequence of matrices {Sn} E cnxm with m > n 
and a set M in the nonnegative real line. Denote by Me the 6-extension of M, 
which is the union of all balls of radius 6 centered at points of M. For any n, let 
-yn(,E) count those singular values of Sn that do not belong to Me. Assume that, for 
any 6 > 0, 

-yn(6) = o(n), n oo. 

Then M is called a general cluster. If M = {0}, then we say that {Sn} is clustered 
at zero. 

Lemma 6.1 ([31, 32]). Let {An} and {Bn} be two sequences of n x m complex 
matrices with m > n. If IIAn - Bn112 = o(n), then the sequence {An - Bn} is 
clustered at zero, and if in addition the sequence {An} has a distribution, then the 
sequence {Bn} has the same distribution. The same statement holds true if, for 
any 6 > 0, there exists a new sequence {Dn(E)} so that rank(Dn(E)) < en and 
IIAn - Bn- Dn(6)I112<6Tn. 

Theorem 6.1. Let f E C(Q, CsXt) be a continuous function. Let us suppose that 
Ln [U] (q) = q+En(q) for each one of the test functions q and with en going uniformly 
to zero on the meshes W related to U (with at most o(k(n)) exceptional points). If 
W and Q are as in Lemma 4.1, then the sequences {Pk(n) (An (f )) } and {An (f ) } 
have the same distribution, and the sequence {Pk(n) (An(f)) - A (f)} is clustered 
at zero. 
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Proof. FRom the assumption and Theorem 5. 1, we have that Ln [U] (f) =f + ( (f 
where the quantity n(f) is infinitesimal as n for k(n) - o(k(n)) grid points. More- 
over, by virtue of item 1 of Theorem 3.2, En(f) is uniformly bounded in norm at 
every grid point. 

But from the second part of Theorem 3.2 we have 

0< | IAn(f) -Pk(n)(Anf(f)) 11F = 11An (f)112 - IIPk(n)(An(f)) I1F2 

Therefore 
k(n) 

IAX(f) -Pk(n)(An(f))IIF = IIAn(f) lF- E3 IlIi(Ln[U](f)(X$ )))II F, 
i=l1 

which coincides with 
k(n) 

||An(f) 112 - Z f (X(n)) ?+ 'n(f) (X(n)) 112 
i=l1 

Now, from the definition of the FYobenius norm, we find that 

k(n) min {s,t} 

Il An()l 2F J2 (An (f) 

The preceding relation is very interesting because, after division by min{s, t}k(n), 
it is exactly the sum appearing in the left-hand side of (4), where F has bounded 
support and over [0, I1flL.] it coincides with F(z) = Z2 (see also Remark 3.1 and 
Lemma 2.2). Then, by applying Lemma 2.2, we find that 

min {s,t} 

(17) IIAX(f)II F = k(n) j E oj(f (x))d[l(x) + o(k(n)) 
Qj=1 

In addition, from the structure of Pk(n) (An (f)) and by exploiting the convergence 
of Ln [U] (f) to f, we may conclude that 

(18) 
k(n) k(n) 

jPk(n) (An(f))F= E |f(4() ? + (f)(x)| = E | f (x() ) | F + o(k(n)). 
i=l i=l 

So, by virtue of the quasi-uniform distribution of points {x(n) } and by Lemma 4.1, 
we arrive at 

k(n) 

(19) x IIf(X(n)) + En(f)(X(n))112 = k(n) 1] ff(x)II dbl(x) + o(k(n)), 
i= 1 

where 
min {s,t} 

If (X) 12 E S jo (f (X)). 
j=1 

The combination of equations (17) and (19), in light of the powerful Lemma 6.1, 
allows one to state that {Pk(n)(An (f))} and {An(f)} are both distributed as f and 
that their difference is clustered at zero. O 
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Therefore the main result holds for the continuous functions. Now we use the 
latter theorem as an intermediate step in order to prove the main statement with f 
merely ,-integrable. Of course, we have to require that the continuous functions are 
dense in the ,-integrable functions, and this is true under very mild assumptions 
on Q and ,: more specifically, it is enough to impose the hypotheses of the Lusin 
theorem and in particular that , is a measure on a locally compact Hausdorff 
space Q (for more details see Rudin [18, p. 55 and pp. 40-41]). For instance, 
the assumption concerning the set Q considered in Lemma 4.1 plainly satisfies this 
requirement. Moreover, we want to stress that the proof of the first part of the next 
result is substantially identical to the one followed by Tilli in the case of multilevel 
matrix-valued Toeplitz structures [29], while in the proof of the second part we use 
arguments and tools introduced by Tyrtyshnikov and Zamarashkin [32]. 

For notational simplicity we present it for the case s = t. 

Theorem 6.2. Let f E L1(Q,M8). Let us assume that Ln[U](q) = q + 6 (q) for 
each one of the test functions q and with 'en going uniformly to zero on the meshes 
W related to U (with at most o(k(n)) exceptional points). If W and Q are as in 
Lemma 4.1, then 

1. the sequences {Pk(n)(An(f))} and {An(f)} have the same distribution f, and 
2. the sequence {Pk(n)(An(f)) - An(f)} is clustered at zero. 

Proof of the first part. What we want to prove is equivalent to the following: 

s k(n)s 
lim 1 .E F(i(Pk(n) (An(f)))) f F(uj (f(x)))d,lu(x), 

n--+oo s -k(n) ZFU knj_ z 

where {( i(Pk(n) (An(f)))} are the singular values of Pk(n) (An(f)) and where F is a 
generic uniformly continuous bounded function. Following Tilli [29], we reduce the 
claim to the case where F is continuously differentiable with sup IF'l < xc, since 
this set is dense in the continuous functions. Second, we choose a sequence {fm} 
of functions belonging to C(Q, M8) so that 

Ilf fmIlL , 0. 

Let us denote Dn as 

1 sk(n) Z 
s. k(ni) E F(ci(Pk(n)(An(f)))) / F(j(f(x)))d,l-(x) 

i=1 

< En,m + Fn,m + Gn,m. 

To handle En,m we use Lemma 3.1 and Lemma 2.1: 

En,m = |skk(n) zk(n) F(crn(Pk( )(An(f)))) - F(i(Pk(n)(An(fm)))) 

< InF H0s 
z 

l |i(Pk(n)(An(f)))- Ui(Pk(n)(An(fm)))I 

< ~s k(n1 IIPk(n)(An (f)) - Pk(n)(An(fm))||tr 

- ski)1 1n k (n) (An (f -fm)) I tr 
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The contribution of Fn,m, owing to Theorem 6.1, is infinitesimal as n, for any m. 
In fact, for any m the function fm is continuous, and then 

1 s-k(n) j 

Fn,M=| s - k(n) ,: F(7i (Pk(n,)(An Xm) ))) - F; F(aj (fm (X))) )dl- (x) 0 

as n tends to oc. Finally, the contribution given by Gn,m with 
s 

Gn,m 1 F F(uj(fm(x))) - F(cj (f(x))) Idcl(x) 
j=1 

does not depend on n and, in light of Lemma 2.1, goes to zero as m tends to infinity. 
With this, owing to the arbitrariness of m, the proof of part 1 is concluded. 

Proof of part 2. Here we have to analyze the difference {Pk(n) (An(f))-An(f)}. We 
use an argument which is substantially the one of Tyrtyshnikov and Zamarashkin 
[32]. Let 

f(x) if I1f(x)SpI<?M, 
0 otherwise. 

Then, for any fixed M, by exploiting the linearity of An(.) and of Pk(n) () we have 

An (f - Pk(n) (An (f )) 

-An(f - fM) + [An(fM) - Pk(n) (An(fM))] + Pk(n) (An(fM -f 

For any M, from the construction of fM, we have that fM E Loo c L2, and 
therefore, from part 2 of Theorem 3.2, from the first part of this theorem, and from 
Lemma 2.2, it follows that 

IAn (fM) - Pk(n)(An(fM))I1F = IIAn(fM)II2- IIPk(n)(An(fM))I1F = o(k(n)). 
Therefore, in order to conclude the proof by the application of Lemma 6.1, we have 
to show that for any positive 6, there exists a suitable M so that An(f - fM) and 
Pk(n) (An(fM - f)) can be written as the sum of a term of spectral norm bounded 
by e and a second term of rank bounded by a quantity 6k(n). 

Since f E L1, from standard measure theory it is clear that 

(20) lim 1a{x E Q: Jmax((f - fM)(X)) > O} = 0. 
M-*oo 

In addition, from the first part we have that the sequences {Pk(n)(4n(f - fM))} 

and {An(f - fM)} are distributed as f - fM. Therefore, for any positive M and 
for any positive e (with the exception, at most, of a countable set of values of e 
[21, 33]), we find that 

#{i: ui(Xn) > 4} < s2i{x C Q: rEmax((f - fM)(X)) > 6}k(n) + o(k(n)), 

where Xn = Pk(n)(An(f - fM)) or Xn = An(f - fM). Therefore, by the singular 
value decomposition, for n large enough, the matrices Xn can be written as terms 
of spectral norm bounded by e and a term whose rank can be bounded as follows: 

,{x E Q: Umax((f - fM)(X)) > 6}k(ln) 

< ,u{x E Q: Omax((f - fM)(X)) > O}k(n) <6Ek(n). 

We note that in the latter inequality we have invoked equation (20) with a choice 
of M = M(e) large enough. [1 
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The case where s 4 t can be manipulated by using the locality assumption. 
Indeed, the proof of Theorem 6.2 with s 4 t can be simply done by embedding 
f: Q - Cs x> into a new square matrix-valued function f: Q -- Mk with k = 

max{s, t} and (f)ij = fi,j for 1 < i < s and 1 < j < t, and (f) ij = 0 otherwise 
(we refer also to the last part of the proof of Theorem 1 in [29] for other details). 

Remark 6.1. It should be observed that Theorem 6.2 can be read in the context of 
approximation of functions in the style of the Korovkin results. Indeed, if Ln [U] (q) 
converges to q over W for the test functions {q}, then, for any integrable function 
f, the sequence {Ln[U](f)(x)} (with x E Wn) is distributed as f in the sense that 

k(n) 
min{s,t} 

n2) oo min{s, t}. k(n) E F(j (Ln [U] (f) (Xi) 

=1 S~=1j= mint s,t} 

F Eu Fa(f (x))) dl-(x), 
j=1 

where F is, as usual, continuous with bounded support (Ln[U] (.) converges to the 
identity in a kind of weak* sense). Therefore, with f merely integrable, we can- 
not claim a kind of pointwise or uniform convergence of the functional operators 
{Ln[U](.)} to the identity, but we can claim a convergence in this distributional 
sense. In conclusion, we can say that part 1 of Theorem 6.2 can be also consid- 
ered an extension of the classical Korovkin theorem in the L1 case. Moreover the 
optimal FRobenius approximation of matrices {An(f)}, enjoying (4) and (6), is a 
way of defining new sequences {Ln[U] (.)} of linear positive operators for which the 
Korovkin theorem applies in the L1 case. We notice that the Bernstein polynomial 
operators [8] are linear and positive and satisfy the Korovkin test, but the approx- 
imation does not hold in L1 [27] in the sense stated in equation (21). On the other 
hand, the convergence in L1 is valid for the Ces'aro (or Fejer) operators [8] which, 
indeed, can be vieved as a special case of the operators {Ln [U] ()} when the spaces 
{Mn = M(Un)} are the circulants [20] associated to the sequence {U = Un} of the 
Fourier transforms. Other nonclassical examples [20, 22, 10] of such sequences of 
operators are obtained by using other spaces, such as those based on sine, cosine, 
or Hartley transforms [16, 20]. 

7. APPLICATIONS AND EXAMPLES 

In the following we apply the theory developed in the preceding sections to mul- 
tilevel Toeplitz matrices [5, 13]. Here the Toeplitz matrices {An (f)} are generated 
[13] by a Lebesgue-integrable, multivariate, and matrix-valued function f in the 
sense that the (block) entries of each An(f) along the k-th (block) diagonal are 
given by the k-th Fourier coefficient Ak of the function f acting on IP, I = [-7r, 7r], 
and having values in the space Csxt of complex s x t matrices. 

In particular we have p levels of structure whose dimensions are represented by 
the multi-index n = (ni, n2,... , np) E NP , so that the inner nonstructured blocks 
are indexed by subscripts like k = (k1, k2,... ,kp) with kj E {-nj + 1,... ,n - 

1}. More precisely, setting x = (x1,x2,... ,xp), k * x = klxl + + kpxp, i = 

(il2 i2)f. ip) and j = (jl) f2)(... ) )p)d we have 

(22) [AnWl)i,j= Ai_,j, Ak= 21/ f (x)e- (kx)dx. 
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It is understood that the basic blocks of this multilevel structure are given by {Ak} 
with Ak E CsXt. To have an idea of the multilevel structure we have to choose an 
ordering among the indices {kj}. The following scheme is the classical one, and is 
clearly described in [31]. The matrix An(f) has dimension N(n)s x N(n)t, where 
N(n) = ni n2 *np, and the symbol [An(f)]i j denotes that we are selecting the 
block (i1, jl) (which is a (p - 1)-level Toeplitz matrix); in this block we are selecting 
the block (i2, j2) which is a (p - 2)-level Toeplitz matrix; and so on. At the end 
of this process we find that the basic blocks are given by the {Ai-j} formally 
determined in equation (22). 

Now with regard to our definitions given in the second section, we have Q = IP, 
k(n) = N(n) and 1t{ } = m{ }/[27r]P (the Haar measure) where m{ } is the usual 
Lebesgue measure. Moreover, Tilli has shown [29] that the sequence {An(f)} is 
distributed as f (for the case where s = t = 1, this was proved by Tyrtyshnikov 
and Zamarashkin in a different way [32]). 

Therefore, under the assumption that the Korovkin test is satisfied, by virtue 
of our results, we deduce that the sequence {PN(n)(An(f))} is still distributed as 
f and that it is a good matrix approximation of {An(f)}, since their difference 
{PN(n) (An (f ))-An (f } is clustered at zero. Incidentally this fact establishes that 
the sequence of spaces {M (Un) } is asymptotically close in the distribution sense 
to the sequence of linear spaces {UfEL1 An(f)}, and this fact translates to fast 

convergence when PN(n)(An(f)) is used as preconditioner for An(f) in pcg-like 
methods [6, 20, 22, 10]. 

Moreover, as shown in [20, 10], the Korovkin test is satisfied in the case of all 
the well known multilevel trigonometric algebras (circulants [7], w-circulants with 

= 1, Hartley and the 8 sine/cosine transforms based algebras described in [16]) 
and in all the possible combinations of them [20, 10]. 

This fact has a natural interpretation in the context of the preconditioning prob- 
lem [5] as discussed in Subsections 8.2 and 8.3. However, this aspect has been deeply 
analyzed in [6, 31, 5, 19, 10, 20, 22, 23]. 

Here we want to stress another application in approximation theory. 

7.1. Applications to the numerical approximation of functions. We con- 
sider some approximation theory problems: let us take a complex-valued p-variate 
function f defined over IP and let us suppose that f E LI. It is natural to suppose 
that we do not know its analytical expression, or that its analytical expression is 
not significant for computational purposes. On the other hand, we miake the as- 
sumption that the Fourier coefficients {ak} are known: this fact is for instance not 
unusual in physics, where a function can be known only by a formal power series. 
We consider the following problems. 

1. Given a function F continuous with bounded support, compute 

F(If(x)I)dx or j F(f (x))dx 

if f is either complex or real-valued. 
2. Give a "plot" of the essential range of If I or of f itself if f is real-valued. 

The first problem has a trivial but expensive computational solution. Take into 
account relation (4) with k(n) = N(n) and An(f) being Toeplitz as in (22), where 
s = t = 1. 
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Of course, the quoted formula has only a theoretical interest since the calculation 
of all the eigenvalues of the multilevel Toeplitz matrices {An (f ) } of large dimension 
is a very expensive task. However, in the preceding section we have proved that the 
eigen/singular values of the optimal circulant operator [6] PN(n) (An (f )) = Cn (f ) 
are distributed as If I or f depending on whether f is complex-valued or real-valued. 
Then, for any F continuous with bounded support, it follows that [31] 

N(n) 

(23) lim E F(An)) - a F(f(x))dx N(m) Soo F(An)[2ir]P lp 

if f is real-valued and {A(n)} is the complete set of the eigenvalues of Cn(f), and 

N(n) 

(24) lim 1 F(a F(_fI(x))dx n --+ oo N (n ~[2i7r]P Jp 

if f is complex-valued and {2(n) } denotes the singular values of Cn(f). 
We remark that all the eigenvalues of Cn(f) can be computed with total arith- 

metic cost O(N(n) log N(n)) and O(logN(n)) parallel steps [3], through use of 
FFTs, and therefore we have a cheap approximate numerical solution of problem 
1. 

For problem 2, with the help of the preceding ergodic formula, it is easy to see 
[27] that a belongs to the essential range [18] 1R(jf l) of If I (or a Ei1R(f)) if and 
only if for any e> 0 

(25) lim _ = 2P neven, 

where Z(x,y,n) denotes the number of singular values or eigenvalues of Cn(f) 
belonging to (x, y) with x < y. 

We observe that an evident criticism of (25) is that we do not have information 
concerning the convergence rate of the limit quantity in the left-hand side of (25) 
(see also [27]). However, fixing e and computing all the eigenvalues of Cn(f) and 
Cn/2(f) with n even and large enough, still within O(N(n) log N(n)) arithmetic 
operations and O(log N(n)) parallel steps, it is possible to decide if a value a 
belongs to the essential range of a given Lebesgue integrable function defined over 
a bounded domain. 

8. NUMERICAL EXPERIMENTS 

This section is organized in three parts. In the first we give numerical evidence 
of the procedure proposed in Section 7.1 to approximate functions. Since the pro- 
cedure is based on a special instance of the first part of Theorem 6.2, we test the 
adherence of the numerical experiments with part 1 of Theorem 6.2 too. 

In the second part we test the second part of Theorem 6.2 with regard to block 
Toeplitz matrices {An (f ) }: in particular we test the clustering at zero of {An (f ) - 
PN(n)(An(f))} and of {(PN(n)(An(f)))+An(f) - I)} for different Gram matrix 
spaces. Here we assume s > t and, given a matrix X, we denote its Moore-Penrose 
pseudo-inverse by X+. 

In the third and last part we use the approximation of Toeplitz matrices by a 
special Gram matrix space as preconditioner in preconditioned conjugate gradient 
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(pcg) algorithms [1]. All the numerical experiments are in perfect agreement with 
the theoretical part. 

In all the numerical experiments we use three choices of Gram matrix spaces 
that are well known in the relevant litterature: 

* The block circulant class [7] M(U72), 

VIn j,k=O 

which is associated to the discrete Fourier transform (DFT). We recall that 
the DFT has a noteworthy and well recognized range of applications [5]. 

* The block T class [10] M(Un)7 

Un -Sn = sin( + 1 ) ;- 

which is associated to the discrete sine transform - I (DST-I). This class of 
matrices is especially suitable in the numerical treatment of differential elliptic 
problems with Dirichlet boundary conditions [11]. 

* The block "cosine" class [7] M(Un)7 

U72-T72z cos ( (2k + I)j7r )]-1 
n - 2~n -Jj,k=0 

with qo = 2, j =1 for j = 1, 2, ..., n-1. It is worth pointing out that this 
class, which is associated to the discrete cosine transform - III (DCT-III), has 
received some attention in the context of image deblurring [5]. 

8.1. Part 1. The spirit of this subsection is the following. We fix a function 
f: IP -+ C"' and a matrix space in which we approximate (the FRobenius optimal 
approximation) the corresponding Toeplitz matrix An(f) for different sizes n. We 
consider a value a and a tolerance e: the procedure sketched in subsection 7.1 
decides if "a belongs to SJZ(g) within a precision e". Here g is f or If I depending 
on whether f is real valued or not. More specifically, if the answer is negative, i.e., 
the limit in the left-hand side of (25) is not 2P, then it means that a ? ?R(g) (and 
for all ,3 E (a - c, a + e) we have ,3 ? 91Z(g)). If the answer is positive i.e., (25) 
holds true, then this means that 3 E SIZ(g) for some ,3 E (a - c, a + e). 

All the experiments are done in MATLAB on a PC 486, and in all the tables the 
label * is a "dummy" symbol which is used for denoting badly defined quantities 
(division by zero). 

Example 1. s = t = 1 and f: I -* R with 

f (x) = sign(x). 

We put Un- FFn (circulant approximation) and e = 10-1 while a E {-1, 1} (Table 
1), a = 8/9 = 0.8889 (Table 2), a = 0.5 (Table 3), a = 0 (Table 4). The value Z 
denotes Z(a - , &a + c, n) (see equation (25)), R denotes 

Z(a -, a + c, n) 

Z(a -c, a + c, n/2) 
and L = log2(R). In light of (25) we know that 

(26) L _ Ln -p = 1 iff a E SR4(f) 
within a precision e. 
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TABLE 1. (Example 1): a = ?1, Un = Fn 

n 16 32 -64 128 256 512 
Z 7 15 31 63 127 255 
R * 2.14 2.06 2.03 2.01 2.00 
L * 1.09 1.04 1.02 1.01 1.00 

TABLE 2. (Example 1): a = 8/9 = 0.8889, Un =Fn 

n .16 32 64 128 256 512 
Z 7 15 22 18 18 18 
R * 2.14 1.46 0.81 1 1 
L * 1.09 0.55 -0.28 0 0 

TABLE 3. (Example 1): a = 0.5, Un =Fn 

nrC 16 32 64 128 256 512 
7z o 0 0 0 0 0 
ft| * * * * * * 

LE *S * * * * * 

TABLE 4. (Example 1): a = 0, Un =Fn 

n 16 32 64 128 256 512 
Z 0 2 2 2 2 2 
R * * 1 1 1 1 
L * 0 0 0 0 

Table 1 shows very clearly that ?1 belongs to FR(f) while Tables 3 and 4 show 
that {0.5, 0} n 1z(f) = 0. Table 2 is more interesting: the value 8/9 = 0.8889 V 
?1Z(f), but the interval (8/9 - c, 8/9 + E) = (0.7889,0.9889) is very close to 1 and 
mfx E [-ir, ir] f (x) = 1} = ir. This little pathology is evident since for n = 16, 32 
it seems that 8/9 c S1Z(f). However it is enough to inspect Table 2 for n > 64 to 
recover the correct negative information. 

Example 2. s = t = 1 and f: I -? R with 

f (x) = x2. 

We use Un _ Sn (r approximation) and e = 10-1. Moreover, the meaning of the 
quantities Z, R and L is the same as in the preceding example. In Table 5 we check 
that a = 2 belongs to ?1Z(f), and the answer is positive for n > 128. In Table 6 we 
make a little change: we test that [-y, 5] = [0.25,1] contains some points of R7(f) 
and we use the ergodic formula related to part 1. of Theorem 6.2 to compute 
mfx E [-7r, 7r]: f (x) E [-y, d] = [0.25, 1]} = 1. In fact, if 

mfx E [-7r,i7r]P f (x) = y} = 0 and mfx E [-7r,7r]P : f(x) =6 = 0, 
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TABLE 5. (Example 2): = -2, Un = Sn 

n 16 32 64 128 256 512| 
Z 0 1 1 3 6 12 
Rf* * 1 3 2 2 
L * - * 0 1.58 1 1 

TABLE 6. (Example 2): [-y, d] = [0.25, 1], r = 1, Un =Sn 

n 16 32 64 128 256 512 
Z 3 5 10 20 41 82 
R * 1.66 2 2 2.05 2 
L * 0.73 1 1 1.03 1 

s(n) 1.1781 0.9817 0.9817 0.9817 1.0063 1.0063 

TABLE 7. (Example 2): a = 10, Un =Fn 

n 16 32 64 128 256 
Z 16 32 64 128 256 
RI* 2 2 2 2 
LI* 1 1 1 1 

TABLE 8. (Example 2): a = 1, Un =Fn 

n 16 32 64 128 256 
Z 0 30 62 126 254 
R * * 2.06 2.03 2.01 
L * * 1.04 1.02 1.01 

then part 1 of Theorem 6.2 implies that 

(27) 

lim N(n)#{J: Aj(PN(n)(An (f)) E [-Y6]} = [2]Pm{x E [-7r,7r]: f(x) E [-y,6]}. 

In Table 6 the quantity s(n) denotes 2 Z. By virtue of (27) with p = 1, we know 
that s((n) must converge to 1 = m{x E [-7r, 7r]: f(x) E [0.25, 1]}, and thi's forecast 
is fully confirmed by the last row of Table 6. 

Example 3. s = t = 2 and f I - C2X2 with 

Vr2_X 10 -i sign(x) 
fx) 2 V10 i sign(x)J 

We set Un Fn (circulant approximation) and e = 10-1. The singular values of 
the function f(x) are two constant functions 07max(f( )) = 10 and amin(f(x)) 
From Tables 7 and 8 it is evident that (except for two outlying singular values) one 
half of the singular values of the 2n x 2n matrix 1Pn(An(f)) lie in (1 -,1, 1 + e) and 
the other half lie in (10 -,c, 10 + e). 

Therefore, by virtue of (25) and (26), we deduce that 1 and 10 belong to '1Z(f) 
= R(Ul (f((X))) U 1R(Z2 (uf(x))) (see [28]). Indeed, since all the singular values 
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(except two of them) are in an E-neighbourhood of 1 or 10, we know that ?IZ(f) 
exactly coincides with {1, 10}. 

Example 4. s = t = 2 and f: I R2X2, with 

f (x) I sign(x)) 

We use the circulant approximation; that is, Un _ Fn_ From a direct explicit 
calculation, we obtain that 

2+x4 + V4+ X8 
mnax (f)) 2> 2 

and 
2+x4 - 4 + X8 x2 

Jmin(f(X)) = 2 

We apply an instance of the ergodic formula in part 1 of Theorem 6.2 
to compute m{x E [-7r,i7r] : Umin(f(X)) E [0,0.1]} 2 x/1* 0. In fact, 
if m{x E [-7r,7r]P : Umin(f(X)) = -y or mJmax(f(x)) = -y} = 0 and 
m{x E [-,7r,ir]P : Umin(f (X)) = -y or Jmax(f (X)) =6 = 0, then part 1 

of Theorem 6.2 implies that 

lim 1 Uj(PN(n)(An (f)) E [776] 
n --+ 00 N (n) 

(28) = 1 (m{x E [-,7r] : min (f(X)) E [7765]} 
[27r] P 

+ mm{x e [-7r,i7r]P: 0max(f ()) E [1Y, 6}) 
As in Table 6, in Table 9 the quantity s(n) is 2 Z. By virtue of (28) with p = 1 
and since Umax(f (X)) > f we know that s(n) must converge to 

m{x E [-7r, 7r] : Jmin(f (X)) E [07 0. 1]} 2 \/. 0.1 = 0.7521, 

and this forecast is fully confirmed by the last row of Table 9. 

TABLE 9. (Example 4): [-y, 6] = [0,0.1], r 0.7521, Un = Fn 

n 16 32 64 128 256 
Z 2 4 8 16 31 
R * 2 2 2 1.93 
L * 1 1 1 0.95 

s(n) 0.7854 0.7854 0.7854 0.7854 0.7609 

8.2. Part 2. From part 2 of Theorem 6.2 we know that the sequence 

{Pk(n) (An(f )) - An(f )} 

is clustered at zero. When s > t and when ,a{x E Q: Umin(f (X)) = 0} = 0 it is easy 
to prove that the new sequence {(Pk(n)(An(f)))+An(f) - I} is clustered at zero 
too. This fact has a practical importance in the context of the preconditioning. 
Here we report a special and more detailed version of this statement in the case 
where An(O) is the multilevel block Toeplitz operator. 
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Proposition 8.1 ([10, 23]). Let us assume that f E C(IP, Csxt) with s > t. 

pl.: If p = 1 and the minimal singular value umin(f (x)) of f is strictly positive, 
then for any e > 0 

W7N (n) (An (f )+An (f) 

has singular values in (1 - 6,1 + e) except, at most, NE = 0(1) outliers. 
p2.: If p > 1 and the minimal singular value amin(f (x)) of f is strictly positive, 

then for any e > 0 

WN (n) (An (f ))) +An (f 

has singular values in (1 - 6, 1 + e) except, at most, 
p 

Ne = O(N(n)E n 1) 
i=l1 

outliers. 
p3.: If the set of the zeros of the minimal singular value amin(f(x)) of f has 

zero Lebesgue measure, then for any e > 0 

(PN(n) (An (f ))) +An (f 

has singular values in (1 - 6,1 + e) except, at most, NE = o(N(n)) outliers. 

In the following set of examples we test numerically part 2 of Theorem 6.2 and 
the previous proposition. 

Example 5. s = 2, t = 1 and f: I R2x1 is such that 

( 5+ x 2 
f(x) ( sign(x) J 

Example 6. s = 2, t = 1 and f: I R2x1 is such that 

f (x)= (sign(x)(2+2cos(x)) 

Tables 10 and 11 concern Example 5, and Tables 12 and 13 concern Example 6. 
In particular, in Tables 10 and 12 we report the behaviour of the singular values 
of {PN(n)(An(f)) - An(f)}, and in the first row we report the behaviour of the 
"biggest outlier". 

In Tables 11 and 13 we report the behaviour of the singular values of 

{(PN (n) (An (f ))) +An (f ) }7 

and in the first two rows we report the behaviour of the "smallest outlier" and the 
"biggest outlier". The symbol N denotes the number of singular values belonging 
to a cluster of radius e = 10-1, while R denotes the related percentage with respect 
to the total number of singular values. 

From Tables 10 and 13, it is evident that the singular values cluster as n increases. 
However, there are differences between Example 5 and Example 6. 

In Table 11 the singular values of {(PN(n)(An(f)))+An(f)} belong to (0.7,1,3) 
for all the considered choices of n, and we have a constant number of outliers with 
regard to e = 10-1. In Table 13 for n = 128 we have ann) = 0.03 and a - 14.55, 
and it is clear that ann) -O 0 and an(n) -X o as n tends to infinity. Moreover, in 
Table 13 the number of the outliers is not constant even if it grows very slowly. 



KOROVKIN TESTS, APPROXIMATION, AND ERGODIC THEORY 1555 

TABLE 10. (Example 5): An -Pn, Un = Fn 

n 16 32 64 128 

v___ 
2.21 2.26 2.28 2.29 

e 0.1 0.1 0.1 0.1 
N 2 21 52 117 
R 12% 65% 81% 91% 

TABLE 11. (Example 5): Pn+An, Un =Fn 

n 16 32 64 128 
a(n) 0.80 0.79 0.79 0.79 

n) 1.26 1.27 1.27 1.28 
e 0.1 0.1 0.1 0.1 
N 14 30 62 126 
R 87% 93% 96% 98% 

TABLE 12. (Example 6): An -Pn, Un =Fn 

n 16 32 64 128 

a_n_ 2.50 2.66 2.79 2.91 
e 0.1 0.1 0.1 0.1 
N 4 19 50 114 
R 25% 59% 78% 89% 

TABLE 13. (Example 6): Pn+An, Un =Fn 

n 16 32 64 128 

ann 0.20 0.12 0.07 0.03 

a_n_ 3.45 5.34 8.72 14.55 
e 0.1 0.1 0.1 0.1 

N 9 23 51 111 
R 56% 71% 79% 86% 

The reason for this evident difference is due to the "conditioning" of the gener- 
ating functions. Table 11 concerns Example 5, where the conditioning of f is given 
by 

(29) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~esssupxamax(f(X)) _ 5 + 7.2)2 1=2927 

(29) ess inf x gmin (f (x)) = 26 

Moreover, amin(An(f)) > amin(An(f)), where f(x) = 5 + X2 is a 1 x 1 submatrix 
of f (see Remark 2.4 in [28]). But gmin(An(f)) > 5 (see [26]) and gmax(Anr(f)) < 
ess supx max (f (x)) = A/(5 + 1r2)2 + 1 = 14.9032 (see Theorems 2.1 and 2.4 in [28]). 
In conclusion, the matrices of the sequence {An(f)} are well conditioned and the 
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related spectral condition numbers are bounded by 

(5+72)2 + 1 
(30) (5i221= 2.9806. 

5 
Notice that in this specific example the condition numbers of f and An (f) displayed 
in (29) and (30) are very close. 

On the other hand, the generating function used in Example 7 is "ill conditioned", 
since 

ess supx max (f (X) )= OO 

ess infxgmin (f (X)) 

As a consequence of the fact that {An(f)} is distributed as f [29] we have that 
{An(f)} and {lfN(n) (An(f))} are asymptotically ill conditioned. In light of the 
analysis given in [9] we deduce a substantial weakening of the clustering properties of 
the sequence {('PN(n) (An(f)))+An(f)} and its asymptotic ill-conditioning (compare 
part p3 of Proposition 8.1 with [9]). 

8.3. Part 3. Here we just want to give numerical evidence of the superlinear con- 
vergence rate attained by a pcg-like method based on the optimal Toeplitz approx- 
imation in a "cosine" space. 

Therefore we consider real matrix-valued generating functions f(x) of one vari- 
able, leading to one-level block Toeplitz matrices An (f) with nonstructured rect- 
angular blocks. For several increasing values of n, we then perform the following 
calculations. 

1. Construction of the preconditioner 1Pn(An (f)), where Un = Tn is the DCT-JJJ. 
2. Computation of the singular values of the preconditioned matrix 

(31) (PnP(An(f)))+An(f), 

which are expected to have a proper cluster at 1 by part pl of Proposition 8.1. 
In fact, a neighborhood of center 1 and decreasing radius en is detected, con- 
taining all the singular values corresponding to the size n with the exception 
of a constant number of outliers. 

3. Solution of the normal equations related to the least-squares problem 

(32) min JJAn(f)x -b12, x 

where b is the vector of all ones, by means of a pcg method with starting 
vector of all zeros and 1Pn(Am(f)) as a preconditioner. The iterations stop 
when the normal equation residual norm is reduced by a factor less than 
lo-12. 

Example 7 ([10]). s 2, t = 1 and f: I -> R2XI is such that 

( 1 + x2 \ 

f(x) - 
JxJ(2 - 2cosx) J 

Since the first component of f is strictly positive, the hypothesis of part pl of 
Proposition 8.1 (Umin(f) > 0) is fulfilled. For every n, the preconditioned matrix 
(31) has 2 singular values a,m) and a2m) far from 1, and the remaining ones lie in a 
en-neighborhood of 1, as sketched in Table 14. 

The pcg method applied to the least-squares problem (32) achieves the desired 
precision 1012 after kn iterations, where kn tends to decrease with respect to n as 
displayed in Table 15. 
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TABLE 14. (Example 7): P+An Un = Tn 

n 16 32 64 128 
C(n) 2.02 2.16 2.24 2.27 1 

(n) 1.99 2.16 2.24 2.27 
en 0.2964 0.1682 0.0884 0.0575 
N 14 30 62 126 
R 87% 93% 96% 98% 

TABLE 15. (Example 7): pcg iterations, Un =Tn 

In 16 32 64 128 256 5121 
|kn 10 15 13 12 10 9| 

9. CONCLUSIONS 

A general analysis of clustering the sequences {Pk(n)(An(f))} and {An(f)- 
Pk(n)(An(f))} is made under very mild assumptions on {An(f)}. We used the 
LPOs theory, an ergodic assumption (4), and the Korovkin theorem. Our results 
have applications in constructive approximation and numerical linear algebra. In 
particular, the Korovkin approach has been very successful for dealing with Toeplitz 
linear systems. On the other hand, future work should concentrate more attention 
on the rich variety of matrix-structures coming from the discretization of PDEs with 
boundary conditions and of elliptic type. In fact, these structures are often related 
to LPOs [25, 21] and fulfill an assumption in the style of equation (4) [30, 21]. 
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